
Gamebus FHIR Layer
Release v0.0.1

unknown

Jul 17, 2023

CONTENTS

1 Tutorials 3
1.1 Tutorial . 3

1.1.1 Requirements . 3
1.1.2 Start FHIR server . 3
1.1.3 GameBus . 4
1.1.4 Request on FHIR API . 10

2 Guide for Development 17
2.1 Guide for developers . 17

2.1.1 Introduction to the architecture . 17
2.1.2 Build mapping engine . 18
2.1.3 Develop FHIR server . 19
2.1.4 Develop mapping configs . 20
2.1.5 Build docker image . 22

i

ii

Gamebus FHIR Layer, Release v0.0.1

GameBus is a digital platform where you can, together with your family, friends or team, play healthy social, cognitive,
and physical games in a personalized gaming experience. Like many other healthcare platforms, GameBus uses its in-
house schemas to represent data and offers a specific REST API to share these data. However, this approach can lead to
barriers to information exchange between platforms that do not use the same schema or API. It’s like the communication
challenge between two people who do not understand each other’s language. A better solution would be for the different
platforms to speak the same language. Here, a popular “language” is FHIR.

FHIR (Fast Healthcare Interoperability Resources) is a standard for exchanging healthcare information electronically.
It describes healthcare data formats and elements and API. FHIR has been more and more widely used in industry and
academia, becoming the de-facto standard.

To enable FHIR service for GameBus system, we have developed GameBus FHIR layer. It is built on a technology
stack of open source software and consists of two main parts: a mapping engine and a FHIR web server. The two
components are integrated into the FHIR layer in order for GameBus to provide FHIR compliant data. The FHIR layer
can be deployed as a microservice. And more importantly, applying the FHIR layer to GameBus does not need any
change on GameBus system.

Though the FHIR layer is developed for GameBus platform, it can be easily reused for other healthcare systems with
some adaptations to the details.

The diagram below shows the relationship between GameBus system, FHIR layer, and end users.

Highlights:

• Open source

• Smooth deployment as microservice

• Adding/changing mappings with ease

• Adding/changing operations for FHIR REST API with ease

• Not only for GameBus, easy to adapt for other healthcare platforms

CONTENTS 1

https://blog.gamebus.eu/
http://hl7.org/fhir/

Gamebus FHIR Layer, Release v0.0.1

2 CONTENTS

CHAPTER

ONE

TUTORIALS

1.1 Tutorial

1.1.1 Requirements

Note for Mac users

Mac with Apple silicon (e.g. M1, M2 cpu) is not supported

Installation

• Chrome browser (it’s required because of Chrome DevTools)

• Docker, see how to install Docker

1.1.2 Start FHIR server

GameBus FHIR layer is open-source and available as a Docker image (id: nlesc/gamebus-fhir-layer). The most
convenient way to deploy or run it is using Docker.

This tutorial will show you how to run GameBus FHIR layer using Docker locally.

Run Docker container

To start the server, type the command below in a terminal:

docker run -p 8080:8080 nlesc/gamebus-fhir-layer start_fhir_server https://api3-new.
→˓gamebus.eu/v2

This command runs a Docker container using the nlesc/gamebus-fhir-layer image,

• -p 8080:8080 binds the container’s port 8080 to host machine’s port 8080,

• start_fhir_server is the command to start the HAPI FHIR server in container,

• https://api3-new.gamebus.eu/v2 is the endpoint of GameBus API.

For more details about running a Docker container, see Docker’s doc.

When the server starts, it’ll be served locally on http://localhost:8080.

Now the FHIR server is ready to use. Before using it, we have to create an account on GameBus platform and add some
test data to GameBus for us to request later using FHIR REST API, for details see the next section.

3

https://www.google.com/chrome/
https://developer.chrome.com/docs/devtools/
https://docs.docker.com/get-docker/
https://github.com/nwo-strap/gamebus-fhir-layer
https://hub.Docker.com/repository/Docker/nlesc/gamebus-fhir-layer
https://docs.Docker.com/engine/reference/commandline/run/
http://localhost:8080

Gamebus FHIR Layer, Release v0.0.1

1.1.3 GameBus

GameBus FHIR layer is a wrapper on top of GameBus platform, acting like a translator. The layer itself does not have
a database, so not storing any data. GameBus platform is where the data is stored.

To use the FHIR layer, users need to create an account on GameBus platform (for free) and then add some data to it for
requesting later with FHIR REST API.

Create a GameBus account

You can create a GameBus account at https://app3-new.gamebus.eu. Then you will see a web app like the screenshot
below.

If you want to explore the full functionality of GameBus, you could check its manual at https://blog.gamebus.eu. Note
that it’s NOT required for this tutorial.

4 Chapter 1. Tutorials

https://app3-new.gamebus.eu
https://blog.gamebus.eu

Gamebus FHIR Layer, Release v0.0.1

Add data manually

There are various ways to add activity data to GameBus. Here we’ll manually fill some data using its web app.

1. Click sidebar Activities and then click the plus button

2. Click ALL ACTIVITIES and then choose Walk activity

1.1. Tutorial 5

Gamebus FHIR Layer, Release v0.0.1

3. Add walk data manually. For example, here we add 2500 steps, 1000 meters, 10 minutes and 50 Kcal. After
filling, click LOG ACTIVITY to complete the filling.

6 Chapter 1. Tutorials

Gamebus FHIR Layer, Release v0.0.1

1. Now you can see the walk activity in the Activities page, and click it to view details.

1.1. Tutorial 7

Gamebus FHIR Layer, Release v0.0.1

Get activity id

We can get the id of the walk activity from url, the id here is 790972. Check your url for the id, and it will be used in
next section when sending request to FHIR server.

8 Chapter 1. Tutorials

Gamebus FHIR Layer, Release v0.0.1

Add more data

Likewise, you can add more data for other activities, e.g. run, bike, BP measurement.

Also, remember to take a note of the id of each activity, you’ll need them in next section.

Get GameBus token and player id

Chrome browser is required in this part since Chrome DevTools will be used.

1. Login GameBus web app (https://app3-new.gamebus.eu) using Chrome

2. Open Chrome DevTools by pressing key F12. See the guide on how to open Chrome DevTools in different ways.

3. Click the Application panel and then the Local Storage, you will see player id pid and token token on the
right region. The player id is the id for your GameBus account.

4. Take a note of the player id and token, they will be used in next section.

1.1. Tutorial 9

https://app3-new.gamebus.eu
https://developer.chrome.com/docs/devtools/open/

Gamebus FHIR Layer, Release v0.0.1

1.1.4 Request on FHIR API

After starting FHIR server and adding data to GameBus platform in previous sections, now it’s ready to try the service
of GameBus FHIR layer.

The FHIR layer is a service layer on top of the GameBus platform, providing the FHIR REST API for communicating
FHIR-compliant data with the outside. For example, when a user sends an HTTP GET request to FHIR REST API, the
FHIR layer will transform this request and forward the transformed request to GameBus’s API; GameBus will process
the request, e.g. read the requested data from its database, and then return the relevant data in GameBus format to the
FHIR layer; the FHIR layer will then transform the GameBus data to data in FHIR-compliant format, and then return
the FHIR data to user as a HTTP response. That is how the FHIR layer works and how it enables GameBus to provide
FHIR service.

To try and test the FHIR API, we need API clients to help send HTTP requests. Various API clients exist, e.g. httpie,
Postman, Hoppscotch and Insomnia.

In this tutorial, we will use Hoppscotch. It’s a web-based API client. Open its website(https://hoppscotch.io/) in a
browser, then you can start sending HTTP requests.

10 Chapter 1. Tutorials

https://httpie.io/
https://www.postman.com/
https://hoppscotch.io/
https://insomnia.rest/
https://hoppscotch.io/

Gamebus FHIR Layer, Release v0.0.1

Check the capability of FHIR server

We can check the capability of the FHIR server by sending a request to [base]/metadata API. We started the server
of FHIR layer locally, so [base] here is localhost:8080.

Open Hoppscotch website (https://hoppscotch.io/), check the screenshot below, and do the following steps:

1. Use HTTP method GET

2. Fill URL box with http://localhost:8080/metadata

3. Click button Send

4. You should see the response of FHIR server.

The response is FHIR CapabilityStatement resource, which describes the available FHIR resources, operations, and
functionalities on this FHIR server.

Check the resource body to see what FHIR resources and interactions are supported by the current FHIR layer.

1.1. Tutorial 11

https://hoppscotch.io/
https://www.hl7.org/fhir/capabilitystatement.html

Gamebus FHIR Layer, Release v0.0.1

Read FHIR resources

This part will show how to read FHIR Patient and Observation resources. GameBus token, player id, and activity id
will be required to send HTTP requests, check GameBus section to get them.

Read FHIR Patient resource

FHIR Patient resource describes the profile of the patient. FHIR layer maps the user or player profile of GameBus to
the FHIR Patient data.

Check the screenshot below and follow the steps:

1. Fill URL box with http://localhost:8080/Patient/[pid]. You need to replace [pid] with your player
id.

2. Click Authorization button

3. Select authorization type Bearer

4. Fill in the token box with your GameBus token

5. Send the request

The response is a FHIR Patient resource, which is transformed from the player data of GameBus by the FHIR server.

12 Chapter 1. Tutorials

https://www.hl7.org/fhir/patient.html
https://www.hl7.org/fhir/observation.html
https://www.hl7.org/fhir/patient.html
https://www.hl7.org/fhir/patient.html

Gamebus FHIR Layer, Release v0.0.1

Check the detail of the response body to see if the information is consistent with what you provided to GameBus when
creating an account, e.g. first name, last name and email.

Read FHIR Observation resource

Some activity data (e.g. walk) were added to GameBus in the previous section. These activities will be mapped to
FHIR Observation resource by the FHIR layer.

To request the FHIR Observation data, the activity id is required, e.g. the id of walk activity. Check previous section
to get it.

Check the screenshot below and follow the steps:

1. Fill URL box with http://localhost:8080/Observation/[activity_id]. You need to replace
[activity id] with GameBus activity id, e.g. walk activity id is 790972.

2. Fill in Bearer token if it’s empty

3. Send the request

1.1. Tutorial 13

https://www.hl7.org/fhir/observation.html

Gamebus FHIR Layer, Release v0.0.1

The response is a FHIR Observation resource. Check the detail of the response body to see if the information is
consistent with the activity data you added to GameBus.

Search FHIR Observation resources

Besides requesting FHIR observations with a specific id, FHIR layer also supports searching based on e.g. observation
type and/or date. To get the full list of supported search parameters, you can check the CapabilityStatement data
in the section above.

14 Chapter 1. Tutorials

https://www.hl7.org/fhir/observation.html

Gamebus FHIR Layer, Release v0.0.1

Search specific types of observations

As an example, here we’d like to search all observations related to walk activity.

Check the screenshot below and follow the steps:

1. Fill URL box with http://localhost:8080/Observation?patient=[pid]&code=walk. You need to re-
place [pid] with GameBus player id.

2. Fill in Bearer token if it’s empty

3. Send the request

The response is FHIR Bundle resource, it’s a bundle of requested walk activities (FHIR Observation data) with full
URL to each observation.

1.1. Tutorial 15

https://www.hl7.org/fhir/bundle.html

Gamebus FHIR Layer, Release v0.0.1

Try other search parameters

Observation supports other search parameters besides code.

Here are some examples you could try:

Request URL Comment
http://localhost:8080/Observation?patient={[}pid{]}&code=walk,run,bike search all observations re-

lated to walk, run and bike
activities

http://localhost:8080/Observation?patient={[}pid{]}&date=gt2022-12-01 search all observations
created after 1st Decem-
ber, 2022

http://localhost:8080/Observation?patient={[}pid{]}&code=walk&date=
gt2022-12-01

search all walk observa-
tions created after 1st De-
cember, 2022

http://localhost:8080/Observation?patient={[}pid{]}&code=walk&_format=json search all walk observa-
tions and set response for-
mat to json

http://localhost:8080/Observation?patient={[}pid{]}&code=walk&_sort=date search all walk observa-
tions that are sorted by
date

http://localhost:8080/Observation?patient={[}pid{]}&code=walk&_elements=code,
subject.reference

search all walk ob-
servations and return
only “code” and “sub-
ject.reference” parts of the
Observation resource

Note that the search parameter patient is always required to specify which patient (GameBus player) to query. When
changing the patient (i.e. player id), you also need to change the token to the one associated with that patient (GameBus
player).

Useful links

Here is a cheat sheet for FHIR REST APIs.

For a detailed explanation of all FHIR APIs and search parameters, please check FHIR specification.

16 Chapter 1. Tutorials

http://localhost:8080/Observation?patient={[}pid{]}&code=walk,run,bike
http://localhost:8080/Observation?patient={[}pid{]}&date=gt2022-12-01
http://localhost:8080/Observation?patient={[}pid{]}&code=walk&date=gt2022-12-01
http://localhost:8080/Observation?patient={[}pid{]}&code=walk&date=gt2022-12-01
http://localhost:8080/Observation?patient={[}pid{]}&code=walk&_format=json
http://localhost:8080/Observation?patient={[}pid{]}&code=walk&_sort=date
http://localhost:8080/Observation?patient={[}pid{]}&code=walk&_elements=code,subject.reference
http://localhost:8080/Observation?patient={[}pid{]}&code=walk&_elements=code,subject.reference
https://confluence.hl7.org/display/FHIR/FHIR+Cheatsheets
http://hl7.org/fhir/http.html#3.1.0

CHAPTER

TWO

GUIDE FOR DEVELOPMENT

2.1 Guide for developers

2.1.1 Introduction to the architecture

GameBus FHIR layer is built on a tech stack of open-source softwares (see diagram below), comprising two major
components:

• Mapping engine

Mapping engine is a component to convert data from one format to another, e.g. from GameBus JSON data to
FHIR JSON data.

Google HCLS Data Harmonization is used as the mapping engine of GameBus FHIR layer. The engine supports
transformation between any two formats or schemas by configuring mapping rules. The mapping rules can be
configured using protobuf format or Whistle Data Transformation Language that will be automatically transpiled
to protobuf. Because of that, we use Google Whistle or GW to refer to this mapping engine.

• FHIR web server

FHIR web server is the server to provide the capabilities FHIR REST API.

HAPI FHIR framework is used to add these capabilities to GameBus FHIR layer. With this framework, a HAPI
FHIR plain server was created and some resource providers were defined to serve up FHIR resources, e.g. Patient
and Observation.

The FHIR server has two functionalities in GameBus FHIR layer:

– It forwards the user’s HTTP request to GameBus REST API after transforming the request for FHIR REST
API to the request for GameBus API.

– It gets FHIR-compliant data from mapping engine and sends these data to the user as HTTP response
through FHIR REST API.

17

https://github.com/GoogleCloudPlatform/healthcare-data-harmonization
https://developers.google.com/protocol-buffers/docs/overview
https://github.com/GoogleCloudPlatform/healthcare-data-harmonization/tree/master/mapping_language
https://hapifhir.io/hapi-fhir/
https://hapifhir.io/hapi-fhir/docs/server_plain/introduction.html
https://hapifhir.io/hapi-fhir/docs/server_plain/introduction.html

Gamebus FHIR Layer, Release v0.0.1

One of the advantages of this tech stack is that it does not change any code or schema of GameBus platform, but just
add one more layer on the existing platform to add the capabilities of FHIR REST API. Moreover, though this FHIR
layer is developed for GameBus platform, the tech stack can be easily applied to other healthcare platforms to enable
FHIR service.

2.1.2 Build mapping engine

This section will show you how to build Google Whistle (GW) mapping engine (C shared library) for GameBus FHIR
layer.

Build mapping engine shared library

Step 1, install the following dependencies

1. Golang (>=1.7)

2. Java JDK (>= 8)

3. Protobuf Compiler protoc (>= 3.11.4)

4. Clang (>= 11.0.1-2)

Step 2, download adapted Google Whistle codebase.
See subsection below for more info about the codebase.

git clone https://github.com/nwo-strap/healthcare-data-harmonization
cd healthcare-data-harmonization/mapping_engine

Step 3, build C shared library

./build_exports.sh

This script will generate C shared library libgoogle_whistle.so (for Linux) or libgoogle_whistle.
dylib (for macOS) and create a corresponding symbolic link in the path /usr/local/lib. The GameBus
FHIR layer will seek the mapping engine library in this path.

18 Chapter 2. Guide for Development

https://github.com/nwo-strap/healthcare-data-harmonization
https://go.dev/dl/
https://openjdk.org/install/
https://github.com/protocolbuffers/protobuf/releases
https://clang.llvm.org/get_started.html
https://github.com/nwo-strap/healthcare-data-harmonization

Gamebus FHIR Layer, Release v0.0.1

Google Whistle codebase

Compared with original Google Whistle codebase, the codebase used above is a forked codebase and updated with
three new scripts:

• mapping_engine/build_exports.sh
It’s a helper BASH script to generate Go code from protobuf files and then compile Go code (e.g. export
functions) to C shared library.

• mapping_engine/main/exports.go
The export function RunMapping is defined in this Go file, which converts JSON string of one structure to
another.

This Go file can be updated to add other export functions.

• Dockerfile The dockerfile to build a docker image of the mapping engine.

2.1.3 Develop FHIR server

This section guides you on how to set up the development environment for GameBus FHIR layer and how to start a
local test FHIR server.

Set up dev environment

Step 1, install the following dependencies

1. Java JDK (>=17)

2. Apache Maven (>=3.8)

Step 2, build mapping engine
Check this section to build Google Whistle mapping engine (C shared library), which is used by FHIR server to
convert data.

Step 3, set mapping configs

Mapping configs are the rules used by Google Whistle mapping engine to convert data from one format
to another. The repo of mapping configs has pre-defined rules for data conversion between GameBus and
FHIR. It should be set properly to be used in GameBus FHIR layer, see the steps below:

First, clone mapping configs repo

git clone https://github.com/nwo-strap/mapping_configs.git

Let’s assume the path of this clone is MAPPING_CONFIG_PATH, e.g. /home/
mapping_configs.

Then, update all local_path variables in gamebus_fhir_r4/configurations/*.textproto files.

If the path of the cloned repo (your MAPPING_CONFIG_PATH) is /mapping_configs, you don’t
need to do anything; Otherwise, you MUST update all local_path with absolute path.

Step 4, clone source code

git clone https://github.com/nwo-strap/gamebus-fhir-layer.git

The gamebus-fhir-layer repo contains the implementation of the FHIR server by taking advantage of
HAPI FHIR framework.

2.1. Guide for developers 19

https://github.com/GoogleCloudPlatform/healthcare-data-harmonization
https://github.com/nwo-strap/healthcare-data-harmonization
https://github.com/nwo-strap/healthcare-data-harmonization/blob/453b9dc60cb58973a72466d4273355d02774820d/mapping_engine/build_exports.sh
https://github.com/nwo-strap/healthcare-data-harmonization/blob/453b9dc60cb58973a72466d4273355d02774820d/mapping_engine/main/exports.go
https://github.com/nwo-strap/healthcare-data-harmonization/blob/453b9dc60cb58973a72466d4273355d02774820d/Dockerfile
https://openjdk.org/
https://maven.apache.org/

Gamebus FHIR Layer, Release v0.0.1

Resource for developing FHIR server

Now it’s ready for further development of FHIR server based on HAPI FHIR framework, e.g. adding or changing FHIR
resources or operations.

HAPI FHIR website has great documentation for developers to build an FHIR server. Also, you could check existing
code in gamebus-fhir-layer repo to get a sense of how the HAPI FHIR framework works.

Start a local test server

Start a local FHIR server to test new functionalities:

make sure you are working in the gamebus-fhir-layer repo
cd gamebus-fhir-layer

Replace "[GAMEBUS_API_URL]" and "[mapping_configs_ABSOLUTE_PATH]" with real␣
→˓values
mvn -D="jna.library.path=/usr/local/lib" \

-Dgb.url="[GAMEBUS_API_URL]" \
-Dgwc.player="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/

→˓configurations/player.textproto" \
-Dgwc.activity="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/

→˓configurations/activity.textproto" \
jetty:run

• -D="jna.library.path=/usr/local/lib" sets the path of mapping engine shared library

• -Dgb.url="[GAMEBUS_API_URL] sets the URL of GameBus REST API, which is https://api3-new.gamebus.
eu/v2.

• -Dgwc.player="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/configurations/
player.textproto" sets the mapping config for GameBus player data. Replace the
[mapping_configs_ABSOLUTE_PATH] with the real value of the absolute path of the mapping configs
repo (see step 3 above).

• -Dgwc.activity="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/configurations/
activity.textproto" sets the mapping config for GameBus activity data.

By default, the server will be served at the base “http://localhost:8080”.

To test the FHIR server, it’s required to add test data to GameBus, check the tutorial to see how to add data to GameBus.

Then you can send HTTP requests to test the new functionalities of the FHIR server. See this tutorial about how to
request on FHIR REST API .

2.1.4 Develop mapping configs

The mapping_configs repo contains the mapping rules for data conversion between GameBus and FHIR (v4). These
mapping rules are coded with a domain specific language, i.e. Google HCLS Whistle Data Transformation Language.

This section will show you how to set up the development environment, how to run mapping using Google Whistle
mapping engine (which is compiled as an executable but not a shared library), and how to validate mapping results.

Note that the development of mapping configs here is independent of FHIR server, you don’t need to run an FHIR
server.

20 Chapter 2. Guide for Development

https://hapifhir.io/hapi-fhir/docs/server_plain/introduction.html
https://api3-new.gamebus.eu/v2
https://api3-new.gamebus.eu/v2
http://localhost:8080
https://github.com/nwo-strap/mapping_configs
https://github.com/GoogleCloudPlatform/healthcare-data-harmonization/tree/master/mapping_language

Gamebus FHIR Layer, Release v0.0.1

Set up dev environment

Step 1. Build mapping engine

This part is similar to the section “Build mapping engine”, but it is not going to build a C shared library.
Instead, we just need to build an executable from the Go source code.

• First, install the following dependencies

1. Golang (>=1.7)

2. Java JDK (>= 8)

3. Protobuf Compiler protoc (>= 3.11.4)

4. Clang (>= 11.0.1-2)

• Second, clone mapping engine codebase

git clone https://github.com/nwo-strap/healthcare-data-harmonization

• Lastly, build it

cd healthcare-data-harmonization
./build_all.sh

The executable healthcare-data-harmonization/mapping_engine/main/main will be generated
after building. Check if it exists.

Step 2. Clone mapping_configs repo

git clone https://github.com/nwo-strap/mapping_configs.git

Let’s call the path of this clone repo MAPPING_CONFIG_PATH, e.g. /home/mapping_configs.

Now the environment is ready. You can then work with the mapping rules in the local repo.

Resources for development

To work with mapping rules, you need to be familiar with the Google Whistle language. Here are some resources for
you to get started:

• Mini guide on language basics

• Language reference

• Builtin functions

Run mapping and validate mapping results

In this part, we take the gamebus_fhir_r4 mapping rules in the repo as an example. To run and validate the mapping
rules, you need to do the following:

• Update all local_path variables in mapping_configs/gamebus_fhir_r4/configurations/*.
textproto files.

If the path of the cloned repo (your MAPPING_CONFIG_PATH) is /mapping_configs, you don’t need to do
anything; Otherwise, you MUST update all local_path with absolute path.

2.1. Guide for developers 21

https://go.dev/dl/
https://openjdk.org/install/
https://github.com/protocolbuffers/protobuf/releases
https://clang.llvm.org/get_started.html
https://github.com/nwo-strap/healthcare-data-harmonization/blob/master/mapping_language/doc/codelab.md
https://github.com/nwo-strap/healthcare-data-harmonization/blob/master/mapping_language/doc/reference.md
https://github.com/nwo-strap/healthcare-data-harmonization/blob/master/mapping_language/doc/builtins.md

Gamebus FHIR Layer, Release v0.0.1

• Run mapping

Try the following command to convert GameBus player data to FHIR Patient:

cd mapping_configs

[BASE_PATH]/healthcare-data-harmonization/mapping_engine/main/main \
-data_harmonization_config_file_spec=./gamebus_fhir_r4/configurations/

→˓player.textproto \
-input_file_spec=./gamebus_fhir_r4/example/gb_player.json
-output_dir=.

– The [BASE_PATH] is the path to the mapping engine repo, replace it with real value.

– -data_harmonization_config_file_spec sets which mapping config file to use. Take a
look at all config files and try others for different types of input.

– -input_file_spec sets the path to the input JSON file.

– -output_dir sets the path to the output directory,

The output file is ./gb_player.output.json, which is named based on the name of the input file.

Try other mapping configs and input files, you can find reference output files in the folder gamebus_fhir_r4/
example/output.

• Validate mapping results

To make sure the mapping output conforms to FHIR specification, the fhir-validator-app or its free service can
help you validate the results. It is just needed to paste the content of the mapping output to the app or service.

2.1.5 Build docker image

This section shows how to build a docker image of GameBus FHIR layer from three repos of healthcare-data-
harmonization (mapping engine), mapping_config and gamebus-fhir-layer (FHIR server).

Requirement

Install the following software

• docker (20.10.14)

After installation, check the version of buildx` by running

docker buildx version

Make sure it has a version >=0.8.

22 Chapter 2. Guide for Development

https://github.com/inferno-framework/fhir-validator-app
https://inferno.healthit.gov/validator/
https://github.com/nwo-strap/healthcare-data-harmonization
https://github.com/nwo-strap/healthcare-data-harmonization
https://github.com/nwo-strap/mapping_configs
https://github.com/nwo-strap/gamebus-fhir-layer
https://docs.docker.com/engine/install/

Gamebus FHIR Layer, Release v0.0.1

Using remote code

We can build a docker image of GameBus FHIR layer from the remote GitHub repos:

• Google Whistle mapping engine https://github.com/nwo-strap/healthcare-data-harmonization

• Mapping configs https://github.com/nwo-strap/mapping_configs

• FHIR server https://github.com/nwo-strap/gamebus-fhir-layer

The last repo contains the Dockerfile used to build the docker image. So first we need to clone this repo

git clone https://github.com/nwo-strap/gamebus-fhir-layer.git

make sure you work in the "gamebus-fhir-layer" repo
cd gamebus-fhir-layer

Then, build the docker image

docker buildx build --no-cache=true -t gamebus-fhir-layer .

This command will build a docker image with the name gambus-fhir-layer.

By default, the source code from the latest commit of main or master branch of each repo will be used to build the
docker image.

To use the source code of different versions, you could provide a branch name, commit , or tag name to the buildx
command:

docker buildx build --no-cache=true -t gamebus-fhir-layer \
--build-arg GW_VERSION=[gitBranch_orCommit_orTag] \
--build-arg GW_CONFIG_VERSION=[gitBranch_orCommit_orTag] \
--build-arg GAMEBUS_FHIR_VERSION=[gitBranch_orCommit_orTag] \
.

Replace the [gitBranch_orCommit_orTag] with real values.

Using local code

It’s also possible to build a docker image directly from local repos. It helps a lot to test new code before pushing them
to remote.

First, make sure the three repos locate in the same place. You can clone them if needed

git clone https://github.com/nwo-strap/healthcare-data-harmonization
git clone https://github.com/nwo-strap/mapping_configs
git clone https://github.com/nwo-strap/gamebus-fhir-layer

Then, build the docker image

make sure you work in the "gamebus-fhir-layer" repo
cd gambus-fhir-layer

build docker image
docker buildx build --no-cache=true -t gamebus-fhir-layer \

--build-context gw-src=../healthcare-data-harmonization \
--build-context gw-config-src=../mapping_configs \

(continues on next page)

2.1. Guide for developers 23

https://github.com/nwo-strap/healthcare-data-harmonization
https://github.com/nwo-strap/mapping_configs
https://github.com/nwo-strap/gamebus-fhir-layer
https://github.com/nwo-strap/gamebus-fhir-layer/blob/main/Dockerfile

Gamebus FHIR Layer, Release v0.0.1

(continued from previous page)

--build-context gamebus-fhir-src=. \
.

The --build-context argument sets which local repo to use. You need to set an absolute path to this
argument if your repos are not in the same place.

24 Chapter 2. Guide for Development

	Tutorials
	Tutorial
	Requirements
	Note for Mac users
	Installation

	Start FHIR server
	Run Docker container

	GameBus
	Create a GameBus account
	Add data manually
	Get activity id

	Add more data
	Get GameBus token and player id

	Request on FHIR API
	Check the capability of FHIR server
	Read FHIR resources
	Read FHIR Patient resource
	Read FHIR Observation resource

	Search FHIR Observation resources
	Search specific types of observations
	Try other search parameters

	Useful links

	Guide for Development
	Guide for developers
	Introduction to the architecture
	Build mapping engine
	Build mapping engine shared library
	Google Whistle codebase

	Develop FHIR server
	Set up dev environment
	Resource for developing FHIR server
	Start a local test server

	Develop mapping configs
	Set up dev environment
	Resources for development
	Run mapping and validate mapping results

	Build docker image
	Requirement
	Using remote code
	Using local code

