

FHIR for GameBus

GameBus [https://blog.gamebus.eu/] is a digital platform where you can, together with your family, friends
or team, play healthy social, cognitive, and physical games in a personalized gaming experience.
Like many other healthcare platforms, GameBus uses its in-house schemas to
represent data and offers a specific REST API to share these data.
However, this approach can lead to barriers to information exchange between
platforms that do not use the same schema or API. It’s like the communication
challenge between two people who do not understand each other’s language.
A better solution would be for the different platforms to speak the same language.
Here, a popular “language” is FHIR.

FHIR [http://hl7.org/fhir/] (Fast Healthcare Interoperability Resources) is a standard for exchanging
healthcare information electronically. It describes healthcare data formats and
elements and API. FHIR has been more and more widely used in industry and
academia, becoming the de-facto standard.

To enable FHIR service for GameBus system, we have developed GameBus FHIR layer.
It is built on a technology stack of open source software and consists of two
main parts: a mapping engine and a FHIR web server. The two components are
integrated into the FHIR layer in order for GameBus to provide FHIR compliant data.
The FHIR layer can be deployed as a microservice. And more importantly, applying
the FHIR layer to GameBus does not need any change on GameBus system.

Though the FHIR layer is developed for GameBus platform, it can be easily reused
for other healthcare systems with some adaptations to the details.

The diagram below shows the relationship between GameBus system, FHIR layer, and end users.

[image: GameBus FHIR Layer]
Highlights:

	Open source

	Smooth deployment as microservice

	Adding/changing mappings with ease

	Adding/changing operations for FHIR REST API with ease

	Not only for GameBus, easy to adapt for other healthcare platforms

Tutorials

	Tutorial
	Requirements
	Note for Mac users

	Installation

	Start FHIR server
	Run Docker container

	GameBus
	Create a GameBus account

	Add data manually

	Add more data

	Get GameBus token and player id

	Request on FHIR API
	Check the capability of FHIR server

	Read FHIR resources

	Search FHIR Observation resources

	Useful links

Guide for Development

	Guide for developers
	Introduction to the architecture

	Build mapping engine
	Build mapping engine shared library

	Google Whistle codebase

	Develop FHIR server
	Set up dev environment

	Resource for developing FHIR server

	Start a local test server

	Develop mapping configs
	Set up dev environment

	Resources for development

	Run mapping and validate mapping results

	Build docker image
	Requirement

	Using remote code

	Using local code

Tutorial

	Requirements
	Note for Mac users

	Installation

	Start FHIR server
	Run Docker container

	GameBus
	Create a GameBus account

	Add data manually
	Get activity id

	Add more data

	Get GameBus token and player id

	Request on FHIR API
	Check the capability of FHIR server

	Read FHIR resources
	Read FHIR Patient resource

	Read FHIR Observation resource

	Search FHIR Observation resources
	Search specific types of observations

	Try other search parameters

	Useful links

Requirements

Note for Mac users

Mac with Apple silicon (e.g. M1, M2 cpu) is not supported

Installation

	Chrome browser [https://www.google.com/chrome/] (it’s required because of Chrome DevTools [https://developer.chrome.com/docs/devtools/])

	Docker, see how to install Docker [https://docs.docker.com/get-docker/]

Start FHIR server

GameBus FHIR layer is open-source [https://github.com/nwo-strap/gamebus-fhir-layer] and available as a Docker image [https://hub.Docker.com/repository/Docker/nlesc/gamebus-fhir-layer]
(id: nlesc/gamebus-fhir-layer). The most convenient way to deploy or run
it is using Docker.

This tutorial will show you how to run GameBus FHIR layer using Docker locally.

Run Docker container

To start the server, type the command below in a terminal:

docker run -p 8080:8080 nlesc/gamebus-fhir-layer start_fhir_server https://api3-new.gamebus.eu/v2

This command runs a Docker container using the nlesc/gamebus-fhir-layer
image,

	-p 8080:8080 binds the container’s port 8080 to host machine’s port 8080,

	start_fhir_server is the command to start the HAPI FHIR server in container,

	https://api3-new.gamebus.eu/v2 is the endpoint of GameBus API.

👉 For more details about running a Docker container, see Docker’s doc [https://docs.Docker.com/engine/reference/commandline/run/].

When the server starts, it’ll be served locally on http://localhost:8080.

Now the FHIR server is ready to use. Before using it, we have to create an
account on GameBus platform and add some test data to GameBus for us to request
later using FHIR REST API, for details see the next section.

GameBus

GameBus FHIR layer is a wrapper on top of GameBus platform, acting like a
translator. The layer itself does not have a database, so not storing any data.
GameBus platform is where the data is stored.

To use the FHIR layer, users need to create an account on GameBus platform
(for free) and then add some data to it for requesting later with FHIR REST API.

Create a GameBus account

You can create a GameBus account at https://app3-new.gamebus.eu. Then you will
see a web app like the screenshot below.

[image: GameBus web app]
👉 If you want to explore the full functionality of GameBus, you could check
its manual at https://blog.gamebus.eu. Note that it’s NOT required for this tutorial.

Add data manually

There are various ways to add activity data to GameBus. Here we’ll manually
fill some data using its web app.

	Click sidebar Activities and then click the plus button

[image: _images/gamebus_add_data_01.png]

	Click ALL ACTIVITIES and then choose Walk activity

[image: _images/gamebus_add_data_02.png]

	Add walk data manually. For example, here we add 2500 steps, 1000 meters,
10 minutes and 50 Kcal. After filling, click LOG ACTIVITY to
complete the filling.

[image: _images/gamebus_add_data_03.png]

	Now you can see the walk activity in the Activities page, and
click it to view details.

[image: _images/gamebus_add_data_04.png]

Get activity id

We can get the id of the walk activity from url, the id here is 790972.
Check your url for the id, and it will be used in next section when sending
request to FHIR server.

[image: _images/gamebus_add_data_05.png]

Add more data

Likewise, you can add more data for other activities, e.g. run, bike,
BP measurement.

Also, remember to take a note of the id of each activity, you’ll need them in
next section.

Get GameBus token and player id

Chrome browser is required in this part since Chrome DevTools will be used.

	Login GameBus web app (https://app3-new.gamebus.eu) using Chrome

	Open Chrome DevTools by pressing key F12.
See the guide [https://developer.chrome.com/docs/devtools/open/] on how to
open Chrome DevTools in different ways.

	Click the Application panel and then the Local Storage, you
will see player id pid and token token on the right region.
The player id is the id for your GameBus account.

	Take a note of the player id and token, they will be used in next section.

[image: _images/gamebus_token.png]

Request on FHIR API

After starting FHIR server and
adding data to GameBus platform in
previous sections, now it’s ready to try the service of GameBus FHIR layer.

The FHIR layer is a service layer on top of the GameBus platform, providing the FHIR REST API
for communicating FHIR-compliant data with the outside. For example, when a user sends
an HTTP GET request to FHIR REST API, the FHIR layer will transform this request and
forward the transformed request to GameBus’s API; GameBus will process the request,
e.g. read the requested data from its database, and then return the relevant data in
GameBus format to the FHIR layer; the FHIR layer will then transform the GameBus data to
data in FHIR-compliant format, and then return the FHIR data to user as a HTTP
response. That is how the FHIR layer works and how it enables GameBus to provide FHIR
service.

To try and test the FHIR API, we need API clients to help send HTTP requests.
Various API clients exist, e.g. httpie [https://httpie.io/], Postman [https://www.postman.com/], Hoppscotch [https://hoppscotch.io/] and Insomnia [https://insomnia.rest/].

In this tutorial, we will use Hoppscotch. It’s a web-based API client.
Open its website(https://hoppscotch.io/) in a browser, then you can start
sending HTTP requests.

Check the capability of FHIR server

We can check the capability of the FHIR server by sending a request to
[base]/metadata API. We started the server of FHIR layer locally, so
[base] here is localhost:8080.

Open Hoppscotch website (https://hoppscotch.io/), check the screenshot below,
and do the following steps:

	Use HTTP method GET

	Fill URL box with http://localhost:8080/metadata

	Click button Send

	You should see the response of FHIR server.

[image: _images/fhir_api_metadata.png]
The response is FHIR CapabilityStatement [https://www.hl7.org/fhir/capabilitystatement.html] resource, which describes the
available FHIR resources, operations, and functionalities on this FHIR server.

Check the resource body to see what FHIR resources and interactions are
supported by the current FHIR layer.

Read FHIR resources

This part will show how to read FHIR Patient [https://www.hl7.org/fhir/patient.html] and Observation [https://www.hl7.org/fhir/observation.html] resources.
GameBus token, player id, and activity id will be required to send HTTP requests,
check GameBus section to
get them.

Read FHIR Patient resource

FHIR Patient [https://www.hl7.org/fhir/patient.html] resource describes the profile of the patient. FHIR layer maps
the user or player profile of GameBus to the FHIR Patient data.

Check the screenshot below and follow the steps:

	Fill URL box with http://localhost:8080/Patient/[pid]. You need to
replace [pid] with your player id.

	Click Authorization button

	Select authorization type Bearer

	Fill in the token box with your GameBus token

	Send the request

[image: _images/fhir_api_patient.png]
The response is a FHIR Patient [https://www.hl7.org/fhir/patient.html] resource, which is transformed from the
player data of GameBus by the FHIR server.

Check the detail of the response body to see if the information is consistent with
what you provided to GameBus when creating an account, e.g. first name, last
name and email.

Read FHIR Observation resource

Some activity data (e.g. walk) were added to GameBus in the previous section. These
activities will be mapped to FHIR Observation [https://www.hl7.org/fhir/observation.html] resource by the FHIR layer.

To request the FHIR Observation data, the activity id is required, e.g. the id
of walk activity. Check previous section
to get it.

Check the screenshot below and follow the steps:

	Fill URL box with http://localhost:8080/Observation/[activity_id].
You need to replace [activity id] with GameBus activity id, e.g.
walk activity id is 790972.

	Fill in Bearer token if it’s empty

	Send the request

[image: _images/fhir_api_observation.png]
The response is a FHIR Observation [https://www.hl7.org/fhir/observation.html] resource. Check the detail of the response body
to see if the information is consistent with the activity data you added to GameBus.

Search FHIR Observation resources

Besides requesting FHIR observations with a specific id, FHIR layer also supports
searching based on e.g. observation type and/or date. To get the full list of
supported search parameters, you can check the CapabilityStatement data
in the section above.

Search specific types of observations

As an example, here we’d like to search all observations related to walk activity.

Check the screenshot below and follow the steps:

	Fill URL box with http://localhost:8080/Observation?patient=[pid]&code=walk.
You need to replace [pid] with GameBus player id.

	Fill in Bearer token if it’s empty

	Send the request

[image: _images/fhir_api_search.png]
The response is FHIR Bundle [https://www.hl7.org/fhir/bundle.html] resource, it’s a bundle of requested walk
activities (FHIR Observation data) with full URL to each observation.

Try other search parameters

Observation supports other search parameters besides code.

Here are some examples you could try:

	Request URL

	Comment

	http://localhost:8080/Observation?patient=[pid]&code=walk,run,bike

	search all observations related to walk, run and bike activities

	http://localhost:8080/Observation?patient=[pid]&date=gt2022-12-01

	search all observations created after 1st December, 2022

	http://localhost:8080/Observation?patient=[pid]&code=walk&date=gt2022-12-01

	search all walk observations created after 1st December, 2022

	http://localhost:8080/Observation?patient=[pid]&code=walk&_format=json

	search all walk observations and set response format to json

	http://localhost:8080/Observation?patient=[pid]&code=walk&_sort=date

	search all walk observations that are sorted by date

	http://localhost:8080/Observation?patient=[pid]&code=walk&_elements=code,subject.reference

	search all walk observations and return only “code” and “subject.reference” parts of the Observation resource

⚠️ Note that the search parameter patient is always required to specify
which patient (GameBus player) to query. When changing the patient (i.e. player id),
you also need to change the token to the one associated with that patient (GameBus player).

Useful links

👉 Here is a cheat sheet [https://confluence.hl7.org/display/FHIR/FHIR+Cheatsheets] for FHIR REST APIs.

👉 For a detailed explanation of all FHIR APIs and search parameters, please check FHIR specification [http://hl7.org/fhir/http.html#3.1.0].

Guide for developers

	Introduction to the architecture

	Build mapping engine
	Build mapping engine shared library

	Google Whistle codebase

	Develop FHIR server
	Set up dev environment

	Resource for developing FHIR server

	Start a local test server

	Develop mapping configs
	Set up dev environment

	Resources for development

	Run mapping and validate mapping results

	Build docker image
	Requirement

	Using remote code

	Using local code

Introduction to the architecture

GameBus FHIR layer is built on a tech stack of open-source softwares (see diagram below),
comprising two major components:

	Mapping engine

Mapping engine is a component to convert data from one format to another,
e.g. from GameBus JSON data to FHIR JSON data.

Google HCLS Data Harmonization [https://github.com/GoogleCloudPlatform/healthcare-data-harmonization] is used as the mapping engine of GameBus FHIR layer.
The engine supports transformation between any two formats or schemas by configuring
mapping rules. The mapping rules can be configured using protobuf [https://developers.google.com/protocol-buffers/docs/overview] format or
Whistle Data Transformation Language [https://github.com/GoogleCloudPlatform/healthcare-data-harmonization/tree/master/mapping_language] that will be automatically transpiled
to protobuf. Because of that, we use Google Whistle or GW to refer to
this mapping engine.

	FHIR web server

FHIR web server is the server to provide the capabilities FHIR REST API.

HAPI FHIR framework [https://hapifhir.io/hapi-fhir/] is used to add these capabilities to GameBus FHIR layer.
With this framework, a HAPI FHIR plain server [https://hapifhir.io/hapi-fhir/docs/server_plain/introduction.html] was created and some
resource providers were defined to serve up FHIR resources, e.g. Patient and Observation.

The FHIR server has two functionalities in GameBus FHIR layer:

	It forwards the user’s HTTP request to GameBus REST API after transforming the
request for FHIR REST API to the request for GameBus API.

	It gets FHIR-compliant data from mapping engine and sends these data to the user
as HTTP response through FHIR REST API.

[image: GameBus FHIR Layer]
One of the advantages of this tech stack is that it does not change any code or
schema of GameBus platform, but just add one more layer on the existing platform
to add the capabilities of FHIR REST API. Moreover, though this FHIR layer is developed for
GameBus platform, the tech stack can be easily applied to other healthcare
platforms to enable FHIR service.

Build mapping engine

This section will show you how to build Google Whistle (GW) [https://github.com/nwo-strap/healthcare-data-harmonization] mapping engine
(C shared library) for GameBus FHIR layer.

Build mapping engine shared library

Step 1, install the following dependencies

	Golang [https://go.dev/dl/] (>=1.7)

	Java JDK [https://openjdk.org/install/] (>= 8)

	Protobuf Compiler protoc [https://github.com/protocolbuffers/protobuf/releases] (>= 3.11.4)

	Clang [https://clang.llvm.org/get_started.html] (>= 11.0.1-2)

	Step 2, download adapted Google Whistle codebase [https://github.com/nwo-strap/healthcare-data-harmonization].
	See subsection below for more info about the codebase.

git clone https://github.com/nwo-strap/healthcare-data-harmonization
cd healthcare-data-harmonization/mapping_engine

Step 3, build C shared library

./build_exports.sh

This script will generate C shared library libgoogle_whistle.so (for Linux) or
libgoogle_whistle.dylib (for macOS) and create a corresponding symbolic
link in the path /usr/local/lib. The GameBus FHIR layer will seek the
mapping engine library in this path.

Google Whistle codebase

Compared with original Google Whistle codebase [https://github.com/GoogleCloudPlatform/healthcare-data-harmonization], the codebase used above [https://github.com/nwo-strap/healthcare-data-harmonization]
is a forked codebase and updated with three new scripts:

	
	mapping_engine/build_exports.sh [https://github.com/nwo-strap/healthcare-data-harmonization/blob/453b9dc60cb58973a72466d4273355d02774820d/mapping_engine/build_exports.sh]
	It’s a helper BASH script to generate Go code from protobuf files and then compile
Go code (e.g. export functions) to C shared library.

	
	mapping_engine/main/exports.go [https://github.com/nwo-strap/healthcare-data-harmonization/blob/453b9dc60cb58973a72466d4273355d02774820d/mapping_engine/main/exports.go]
	The export function RunMapping is defined in this Go file,
which converts JSON string of one structure to another.

This Go file can be updated to add other export functions.

	Dockerfile [https://github.com/nwo-strap/healthcare-data-harmonization/blob/453b9dc60cb58973a72466d4273355d02774820d/Dockerfile]
The dockerfile to build a docker image of the mapping engine.

Develop FHIR server

This section guides you on how to set up the development environment for GameBus FHIR
layer and how to start a local test FHIR server.

Set up dev environment

Step 1, install the following dependencies

	Java JDK [https://openjdk.org/] (>=17)

	Apache Maven [https://maven.apache.org/] (>=3.8)

	Step 2, build mapping engine
	Check this section
to build Google Whistle mapping engine (C shared library), which is used by
FHIR server to convert data.

Step 3, set mapping configs

Mapping configs are the rules used by Google Whistle mapping engine to convert
data from one format to another. The repo of mapping configs has pre-defined rules
for data conversion between GameBus and FHIR. It should be set properly to be used
in GameBus FHIR layer, see the steps below:

First, clone mapping configs repo

git clone https://github.com/nwo-strap/mapping_configs.git

Let’s assume the path of this clone is MAPPING_CONFIG_PATH, e.g.
/home/mapping_configs.

Then, update all local_path variables in gamebus_fhir_r4/configurations/*.textproto files.

If the path of the cloned repo (your MAPPING_CONFIG_PATH) is /mapping_configs,
you don’t need to do anything; Otherwise, you MUST update all local_path with absolute path.

Step 4, clone source code

git clone https://github.com/nwo-strap/gamebus-fhir-layer.git

The gamebus-fhir-layer repo contains the implementation of the FHIR
server by taking advantage of HAPI FHIR framework.

Resource for developing FHIR server

Now it’s ready for further development of FHIR server based on HAPI FHIR framework,
e.g. adding or changing FHIR resources or operations.

HAPI FHIR website has great documentation [https://hapifhir.io/hapi-fhir/docs/server_plain/introduction.html] for developers to build an FHIR server.
Also, you could check existing code in gamebus-fhir-layer repo to get
a sense of how the HAPI FHIR framework works.

Start a local test server

Start a local FHIR server to test new functionalities:

make sure you are working in the gamebus-fhir-layer repo
cd gamebus-fhir-layer

Replace "[GAMEBUS_API_URL]" and "[mapping_configs_ABSOLUTE_PATH]" with real values
mvn -D="jna.library.path=/usr/local/lib" \
 -Dgb.url="[GAMEBUS_API_URL]" \
 -Dgwc.player="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/configurations/player.textproto" \
 -Dgwc.activity="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/configurations/activity.textproto" \
 jetty:run

	-D="jna.library.path=/usr/local/lib" sets the path of mapping engine shared library

	-Dgb.url="[GAMEBUS_API_URL] sets the URL of GameBus REST API, which is
https://api3-new.gamebus.eu/v2.

	-Dgwc.player="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/configurations/player.textproto"
sets the mapping config for GameBus player data. Replace the [mapping_configs_ABSOLUTE_PATH]
with the real value of the absolute path of the mapping configs repo (see step 3 above).

	-Dgwc.activity="[mapping_configs_ABSOLUTE_PATH]/gamebus_fhir_r4/configurations/activity.textproto"
sets the mapping config for GameBus activity data.

By default, the server will be served at the base “http://localhost:8080”.

To test the FHIR server, it’s required to add test data to GameBus,
check the tutorial to see how to add data to
GameBus.

Then you can send HTTP requests to test the new functionalities of the FHIR server.
See this tutorial about how to request on FHIR REST API.

Develop mapping configs

The mapping_configs repo [https://github.com/nwo-strap/mapping_configs] contains the mapping rules for data
conversion between GameBus and FHIR (v4). These mapping rules are coded with
a domain specific language, i.e. Google HCLS Whistle Data Transformation Language [https://github.com/GoogleCloudPlatform/healthcare-data-harmonization/tree/master/mapping_language].

This section will show you how to set up the development environment, how to run mapping using
Google Whistle mapping engine (which is compiled as an executable but not a shared library),
and how to validate mapping results.

Note that the development of mapping configs here is independent of
FHIR server, you don’t need to run an FHIR server.

Set up dev environment

Step 1. Build mapping engine

This part is similar to the section “Build mapping engine”,
but it is not going to build a C shared library. Instead, we just need to build
an executable from the Go source code.

	First, install the following dependencies

	Golang [https://go.dev/dl/] (>=1.7)

	Java JDK [https://openjdk.org/install/] (>= 8)

	Protobuf Compiler protoc [https://github.com/protocolbuffers/protobuf/releases] (>= 3.11.4)

	Clang [https://clang.llvm.org/get_started.html] (>= 11.0.1-2)

	Second, clone mapping engine codebase

git clone https://github.com/nwo-strap/healthcare-data-harmonization

	Lastly, build it

cd healthcare-data-harmonization
./build_all.sh

The executable healthcare-data-harmonization/mapping_engine/main/main
will be generated after building. Check if it exists.

Step 2. Clone mapping_configs repo

git clone https://github.com/nwo-strap/mapping_configs.git

Let’s call the path of this clone repo MAPPING_CONFIG_PATH, e.g.
/home/mapping_configs.

Now the environment is ready. You can then work with the mapping rules in the
local repo.

Resources for development

To work with mapping rules, you need to be familiar with the Google Whistle language.
Here are some resources for you to get started:

	Mini guide on language basics [https://github.com/nwo-strap/healthcare-data-harmonization/blob/master/mapping_language/doc/codelab.md]

	Language reference [https://github.com/nwo-strap/healthcare-data-harmonization/blob/master/mapping_language/doc/reference.md]

	Builtin functions [https://github.com/nwo-strap/healthcare-data-harmonization/blob/master/mapping_language/doc/builtins.md]

Run mapping and validate mapping results

In this part, we take the gamebus_fhir_r4 mapping rules in the repo as an example. To
run and validate the mapping rules, you need to do the following:

	Update all local_path variables in mapping_configs/gamebus_fhir_r4/configurations/*.textproto files.

If the path of the cloned repo (your MAPPING_CONFIG_PATH) is /mapping_configs,
you don’t need to do anything; Otherwise, you MUST update all local_path with absolute path.

	Run mapping

Try the following command to convert GameBus player data to FHIR Patient:

cd mapping_configs

[BASE_PATH]/healthcare-data-harmonization/mapping_engine/main/main \
 -data_harmonization_config_file_spec=./gamebus_fhir_r4/configurations/player.textproto \
 -input_file_spec=./gamebus_fhir_r4/example/gb_player.json
 -output_dir=.

	The [BASE_PATH] is the path to the mapping engine repo, replace it with real value.

	-data_harmonization_config_file_spec sets which mapping config file to use.
Take a look at all config files and try others for different types of input.

	-input_file_spec sets the path to the input JSON file.

	-output_dir sets the path to the output directory,

The output file is ./gb_player.output.json, which is named based on
the name of the input file.

Try other mapping configs and input files, you can find reference output files
in the folder gamebus_fhir_r4/example/output.

	Validate mapping results

To make sure the mapping output conforms to FHIR specification,
the fhir-validator-app [https://github.com/inferno-framework/fhir-validator-app] or its free service [https://inferno.healthit.gov/validator/] can help you validate the results.
It is just needed to paste the content of the mapping output to the app or service.

Build docker image

This section shows how to build a docker image of GameBus FHIR layer
from three repos of healthcare-data-harmonization [https://github.com/nwo-strap/healthcare-data-harmonization] (mapping engine),
mapping_config [https://github.com/nwo-strap/mapping_configs] and gamebus-fhir-layer [https://github.com/nwo-strap/gamebus-fhir-layer] (FHIR server).

Requirement

Install the following software

	docker [https://docs.docker.com/engine/install/] (≥20.10.14)

After installation, check the version of buildx` by running

docker buildx version

Make sure it has a version >=0.8.

Using remote code

We can build a docker image of GameBus FHIR layer from the remote GitHub repos:

	Google Whistle mapping engine https://github.com/nwo-strap/healthcare-data-harmonization

	Mapping configs https://github.com/nwo-strap/mapping_configs

	FHIR server https://github.com/nwo-strap/gamebus-fhir-layer

The last repo contains the Dockerfile [https://github.com/nwo-strap/gamebus-fhir-layer/blob/main/Dockerfile] used to build the docker image. So first we
need to clone this repo

git clone https://github.com/nwo-strap/gamebus-fhir-layer.git

make sure you work in the "gamebus-fhir-layer" repo
cd gamebus-fhir-layer

Then, build the docker image

docker buildx build --no-cache=true -t gamebus-fhir-layer .

This command will build a docker image with the name gambus-fhir-layer.

By default, the source code from the latest commit of main or master
branch of each repo will be used to build the docker image.

To use the source code of different versions, you could provide a branch name, commit
, or tag name to the buildx command:

docker buildx build --no-cache=true -t gamebus-fhir-layer \
 --build-arg GW_VERSION=[gitBranch_orCommit_orTag] \
 --build-arg GW_CONFIG_VERSION=[gitBranch_orCommit_orTag] \
 --build-arg GAMEBUS_FHIR_VERSION=[gitBranch_orCommit_orTag] \
 .

Replace the [gitBranch_orCommit_orTag] with real values.

Using local code

It’s also possible to build a docker image directly from local repos.
It helps a lot to test new code before pushing them to remote.

First, make sure the three repos locate in the same place. You can clone them
if needed

git clone https://github.com/nwo-strap/healthcare-data-harmonization
git clone https://github.com/nwo-strap/mapping_configs
git clone https://github.com/nwo-strap/gamebus-fhir-layer

Then, build the docker image

make sure you work in the "gamebus-fhir-layer" repo
cd gambus-fhir-layer

build docker image
docker buildx build --no-cache=true -t gamebus-fhir-layer \
 --build-context gw-src=../healthcare-data-harmonization \
 --build-context gw-config-src=../mapping_configs \
 --build-context gamebus-fhir-src=. \
 .

The --build-context argument sets which local repo to use.
You need to set an absolute path to this argument if your repos are not in the same place.

Index

 _images/architecture.png
Cognitive

®Q0o
®

Father

0 .0

Child Adolescent

..
()

Grandmother

GameBus

REST API

GameBus Data

©
Mapping Engine g FHIR Webserver
Google HCLS 21 ,
Data Harmonization E i?;e Bl e

¢ FHIR Layer

FHIR REST API

FHIR
enabled
systems

Other
systems

User

_images/fhir_api_patient.png
Hoppscotch « Open source AP X

T o4 »0@ :

HOPPSCOTCH

©
REST

&

GraphaL

®

Realtime

o3

Settings.

GET

Parameters

| Ostar 40198

1O

(R - R —

Status: 200 + OK Time: 196 ms

JSON

Raw Headers 2

Size: 130KB

Test Results

Response Body

“Patient”,

://gamebus. eu/user”,

"extension”: [

{
url": "https://gamebus.eu/user#registrationdate”,
“valueInstant”: "2023-01-84T16:30:11.0002"

in

{

url": "https://gamebus.eu/user#isActivated”,
valueBoolean®: true

/gamebus . eu/membership”,

https://ganebus. eu/menbership#id’,

& Q @ ‘ @ save My Workspace [JRE3

B swe v

Tests
@enabied © @

The authorization header will be automatically
generated when you send the request.

Leam how ¢

Ul
«
3
[

“valueld": "2791"
in

{

“url": "https://gamebus.eu/menbership#translationkey”,
“valueString": "LEADERSHIP_APPROVED"

in

{

@ Hepafeedback 4 (0 @

_images/fhir_api_search.png
Hoppscotch « Open source AP X

¢ > C 0t @ hoppscotchio o % »00 :

HOPPSCOTCH | () star | 49,198 & Q ® @ saveMyWorkspace Loy

©
REST

&

Gv-phmo

®

Realtime

o3

Settings.

Save v

O mcamensosoomenaepstet o7 2codenwon h

Parameters Body Headers Authorization Pre-requestSeript Tests
Authorization Type Bearer - @enabied © @

€YJNbGCIOISUZIINISIRSCCIBKPXVC.J9.ynAWCIOISIZZFZWIICTOnCGKIXSWIXNICIOUYWIIIONYSNZY

generated when you send the request.
Leam how ¢

Status:200 + OK Time:274ms Size:274 KB

JSON Raw Headers - Test Results

Response Body

Ul
«
3
[

sourceType” :
: "eeB8f14e-cd3f-45ad-8a35-affof3l4eads”,
<

1
2 “Bundle”,
3
4
5 “lastUpdated”: "2023-01-05T15:33:40.868+00:00"
6
7
8

resourceType’
1d": "790972",
21 v extension”: [

“https://ganebus.eu/ganeDescriptor#isAggregate”,
valueBoolean": false

url": “https://gamebus.eu/dataProvider#inage”,
valueUrl": "https://api3-new.ganebus.eu/v2/uploads/public/brand/dp/GameBus.png”

@ Hepafeedback 4 (0 @

_images/fhir_api_metadata.png
Hoppscotch « Open source AP X

T o4 »0@ :

HOPPSCOTCH | () star | 49,198

Qs
- @ (2]

GET - htp/locainost:8080/metadata
ResT
- Parameters Body Headers Authorization
GraphaL Query Parameters
Param
&
Status:200 + OK Time:13ms Size:162KB
Sattings
JSON Raw Headers : TestResults
@ response boay
LRt
2 esourceType”: "CapabilityStatenent”,
3 1d": *42916384-99bb-474d-b508-d2bFa2eal
4 RestServer
5 active”,
6 2023-01-05T15:13:01.243+00:00",
7 Not provided",
8 instance”,
9
10 HAPT FHIR Server”,
n
12
3 {
i “HAPI FHIR"
15 ://10calhost:8680/ "
16
17
8
19 “appLication/fhirxnl”,
20 “ml”,
2 “application/fhir+json”,
22 “json*,
23 “htal/json",
24 “htal/xnl
25
26
27
28
29 v

Pre-request Script

1eb”,

Tests

Q ® & saveMyWorkspace Lo
w8 +
¢ o
ER]

@ Hepafeedback 4 (0 @

_images/fhir_api_observation.png
Hoppscotch « Open source AP X

¢ > C 0t @ hoppscotchio o % »00 :

HOPPSCOTCH | () star | 49,198 & Q ® @ saveMyWorkspace Loy

(1)

e ‘m
-

GET

Save v

Parameters Body Headers Authorization Pre-requestScript Tests

&

Graphal e

Authorization Type Bearer - @enabied © @

€YJNbGCIOLSUZITNISIRSCCIBKPXVC.J9.ynAWCIOISIZZFZWIICTOhCGKIXSWIXNICIOUYWIIIONYSNZY

(] generated when you send the request.
Realtime Leam how ¢

]
Sattings

Status:200 + OK Time:290ms Size: 2.42 KB

JSON Raw Headers - Test Results

Response Body

Ul
«
3
[

"extension”: [

url": "https://gamebus.eu/Propertylnstances#i
valueInteger”: 874679

+//1oinc.org",
“ve.1",
55423-8",
“Number of steps in unspecified time Pedometer”

2500,
ount

: "http://unitsofmeasure.org",
count)"

0D 3o ® Helpafeedback 4 (0 (@

_images/gamebus_add_data_01.png
€ > C (¥ @ app3-new.gamebus.eu/nav/activities

GameBus Activities

@ San Zhang = Filter

@ Filter activities rewarded with points

Newsfeed

Z7 Activities o
$4 Challenges Thursday 5 January 2023
& Cirles No activities

‘Wednesday 4 January 2023
) Chats Y Y

No activities
{5 settings

Tuesday 3 January 2023

No activities

Monday 2 January 2023

No activities

Sunday 1 January 2023

GameBus © 2022 No activities

_images/gamebus_add_data_02.png
_

¢ > C (3 @& app3-new.gamebus.eu/nav/activities/create 6« » 00O

GameBus & Create activity

@ s

Newsfeed >

ALL ACTIVITIES 1

L2
:
:

[~}

Z7 Activities > Run
$4 Challenges > Bike
Circl >
@ ores Transport
) Chats >
Location check-in
{Gh Settings >
Social selfie
Sudoku

Avoid calories

Soccer

Health check

" PETFB-EPDOG O

Social selffie

.
o

Social selffie

Social selffie

aft

Your health

GameBus © 2022

_images/gamebus_add_data_03.png
©0®) camesusAop x |+ v

€ > C (Y @ app3-new.gamebus.eu/nav/activities/create/eyJzY2hlbWUIONSIZGVmYXVsdCIBeyJpZCIeM... (7 % % O @

GameBus ate activity

@ San Zhang
. Walk
Newsfeed

Activities

Challenges When?

Circles Thursday, 05/01 09:38

Chats
Properties

Settings Photo

Steps
2500

Distance
1000 Meters

Duration
10 Minutes

Kilo Calories
50

© 06 0 o

GameBus © 2022 G ACTIVITY

nav.xhtml

 Table of Contents

 		
 FHIR for GameBus

 		
 Tutorial

 		
 Requirements

 		
 Note for Mac users

 		
 Installation

 		
 Start FHIR server

 		
 Run Docker container

 		
 GameBus

 		
 Create a GameBus account

 		
 Add data manually

 		
 Add more data

 		
 Get GameBus token and player id

 		
 Request on FHIR API

 		
 Check the capability of FHIR server

 		
 Read FHIR resources

 		
 Search FHIR Observation resources

 		
 Useful links

 		
 Guide for developers

 		
 Introduction to the architecture

 		
 Build mapping engine

 		
 Build mapping engine shared library

 		
 Google Whistle codebase

 		
 Develop FHIR server

 		
 Set up dev environment

 		
 Resource for developing FHIR server

 		
 Start a local test server

 		
 Develop mapping configs

 		
 Set up dev environment

 		
 Resources for development

 		
 Run mapping and validate mapping results

 		
 Build docker image

 		
 Requirement

 		
 Using remote code

 		
 Using local code

_images/gamebus_login.png
_

*»00 :

¢« >cao

GameBus Newsfeed

®
&
g
N
5
8
3

Newsfeed > g
Z7 Activities > E -
$4 Challenges > No_news
% circles > You are up to date!
) Chats >
{5 settings >

GameBus © 2022

_images/gamebus_token.png
€ > C (0 & app3-new.gamebus.eu/nav/newsfeed o

(% (] | Eements Comsole Souces Network Applcation

Newsfeed

Application C Fiter

i Maniest Key | Value
XX Service Workers authuser {oken"eyJnbGAIOS Uzl INIISnR6e...
e s
=== £ IndexedDB
S WebsaL
No news » & Cookies
& Trust Tokens

You are up to date!

£ Interest Groups

v i)
Gacne Firstnane: "san
& Cache Storage image: null

“Zhang"

S Back/forward cache

—e id: 1672
Background Services "

» roles: ["USER"]
1, Background Fetch

ad write trust”
& Background Syne JINbGCi010SUZTINETS TR CCTETKRXVCI9.
A Notfcations

9 Payment Handler
© Perodic Background Syno
@ Push Messaging

1 Reporting A1

Frames
»Otop

2 & fh D

Newsfeed Activites Challenges ~ Gircles ~ Chats

_images/gamebus_add_data_04.png
€ > C (Y @ app3-new.gamebus.eu/nav/activities?refresh=true

GameBus Activities

@ San Zhang = Filter

Newsfeed
Activitios @ Filter activities rewarded with points
Challenges
Circles Thursday 5 January 2023
Chat: - 09

ats . ‘E’\:’ﬂ(::msEus 09:38 o
Settings

Wednesday 4 January 2023

No activities

Tuesday 3 January 2023

No activities

GameBus © 2022

_images/gamebus_add_data_05.png
_

& > C (3 @ app3-new.gamebus.eu/nav/activities/790972 6« » 00 :
GameBus
@ snowno o
San Zhang N
Newsfeed > Walk
© GameBus
Z7 Activities >
$4 Challenges > © 0 LIKES [0 MESSAGES
% Circles >
Properties.
) Chats >
Steps
{Gh Settings > 2500
Distance
TKM
Duration
10 MIN
Kilo Calories

50

DELETE ACTIVITY

GameBus © 2022

_static/file.png

_static/minus.png

_static/plus.png

